
fnins-14-00015 January 22, 2020 Time: 19:37 # 1

ORIGINAL RESEARCH
published: 24 January 2020

doi: 10.3389/fnins.2020.00015

Edited by:
John Ashburner,

University College London,
United Kingdom

Reviewed by:
Yi Su,

Banner Alzheimer’s Institute,
United States

Jingyun Chen,
New York University, United States

*Correspondence:
Irene Brusini

brusini@kth.se

†Data used in preparation of this
article were obtained from the

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database

(adni.loni.usc.edu). As such, the
investigators within the ADNI

contributed to the design and
implementation of ADNI and/or

provided data but did not participate
in analysis or writing of this report.

A complete listing of ADNI
investigators can be found at:

http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 02 May 2019
Accepted: 08 January 2020
Published: 24 January 2020

Citation:
Brusini I, Lindberg O,

Muehlboeck J-S, Smedby Ö,
Westman E and Wang C (2020)

Shape Information Improves
the Cross-Cohort Performance

of Deep Learning-Based
Segmentation of the Hippocampus.

Front. Neurosci. 14:15.
doi: 10.3389/fnins.2020.00015

Shape Information Improves the
Cross-Cohort Performance of Deep
Learning-Based Segmentation of the
Hippocampus
Irene Brusini1,2* , Olof Lindberg2, J-Sebastian Muehlboeck2, Örjan Smedby1,
Eric Westman2 and Chunliang Wang1 for the AddNeuroMed Consortium and
the Alzheimer’s Disease Neuroimaging Initiative†

1 Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute
of Technology, Stockholm, Sweden, 2 Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society,
Karolinska Institute, Solna, Sweden

Performing an accurate segmentation of the hippocampus from brain magnetic
resonance images is a crucial task in neuroimaging research, since its structural
integrity is strongly related to several neurodegenerative disorders, including Alzheimer’s
disease (AD). Some automatic segmentation tools are already being used, but, in recent
years, new deep learning (DL)-based methods have been proven to be much more
accurate in various medical image segmentation tasks. In this work, we propose a
DL-based hippocampus segmentation framework that embeds statistical shape of the
hippocampus as context information into the deep neural network (DNN). The inclusion
of shape information is achieved with three main steps: (1) a U-Net-based segmentation,
(2) a shape model estimation, and (3) a second U-Net-based segmentation which uses
both the original input data and the fitted shape model. The trained DL architectures
were tested on image data of three diagnostic groups [AD patients, subjects with mild
cognitive impairment (MCI) and controls] from two cohorts (ADNI and AddNeuroMed).
Both intra-cohort validation and cross-cohort validation were performed and compared
with the conventional U-net architecture and some variations with other types of
context information (i.e., autocontext and tissue-class context). Our results suggest
that adding shape information can improve the segmentation accuracy in cross-
cohort validation, i.e., when DNNs are trained on one cohort and applied to another.
However, no significant benefit is observed in intra-cohort validation, i.e., training and
testing DNNs on images from the same cohort. Moreover, compared to other types of
context information, the use of shape context was shown to be the most successful
in increasing the accuracy, while keeping the computational time in the order of a
few minutes.

Keywords: hippocampus, brain MRI, Alzheimer’s disease, image segmentation, deep learning, statistical shape
model
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic progressive
neurodegenerative disorder that constitutes approximately
60–70% of all dementia cases (Burns and Iliffe, 2009). The disease
is characterized, since its first stages, by the loss of synapses
and the depositions of certain lesions in several regions of the
brain, which mainly include extracellular Aβ amyloid plaques
and intracellular tau neurofibrillary tangles (Vinters, 2015).
Moreover, on a macroscopic level, one of the most characteristic
signs of the disease is brain atrophy, which is present in the
majority of AD patients and can be estimated from magnetic
resonance imaging (MRI) (Pini et al., 2016). Therefore, it is
important to study imaging biomarkers that could allow early
identification of subjects at risk of developing the disorder, as
well as quantitatively reflect the disease’s level of progression.
For example, such biomarkers should be able to distinguish AD
both from the healthy state and from mild cognitive impairment
(MCI). Indeed, MCI subjects constitute a relevant study group
for the early identification of the disease, since several MCI cases,
especially when presenting memory dysfunction, have a high
probability of later evolving toward AD (Vinters, 2015).

According to the Braak criteria for AD staging (Braak
and Braak, 1991), the progression of the disease starts
from the transentorhinal cortex (stages I and II), involving then
the hippocampus (stages III and IV), and finally spreading to the
neocortex (stage V). These steps of progressions were defined
based on the changes of accumulation of the neurofibrillary
tangles. However, similar patterns can also be seen in the
progression of brain atrophy according to multiple MRI studies,
which have shown that the atrophy of the hippocampus
measured from MRI images can be used, together with the
atrophy of the entorhinal cortex, as an early sign of AD
(Scheltens et al., 2002). By accurately measuring the volume
of these two brain regions, it is possible to separate healthy
subjects from AD patients with high precision (Liu et al.,
2010). Moreover, shape analysis of the hippocampus has also
been shown to be a valid tool for diagnosing AD and
differentiating it from other forms of dementia (Lindberg et al.,
2012). Evident patterns of hippocampal atrophy have also been
reported in several neuroimaging studies on subjects with MCI
(Tabatabaei-Jafari et al., 2015).

To properly assess the geometrical features (e.g., volume
and shape) of the hippocampus, it is important to have
accurate segmentation tools. Ideally, this should be done by
completely automated software, since manual segmentation
performed by an expert is both extremely time-consuming and
relatively subjective. Various software that performs automatic
hippocampal segmentation—as well as other brain image
processing operations—already exists and is being widely used,
for example, in the case of FreeSurfer (Fischl, 2012) or FSL
(Jenkinson et al., 2012). However, the computational time of these
well-known softwares for performing segmentation is often not
acceptable for use in the clinical routine. Moreover, reaching a
good segmentation accuracy is a challenging task due to several
factors, including, for example, variations in MRI scanners and
acquisition modalities, image artifacts, or variations in the brain

due to the presence of pathology (Akkus et al., 2017), e.g.,
hippocampal atrophy.

Several previous studies have explored alternative approaches
for automatic brain parcellation. Some of the most popular and
successful ways to segment brain MRI images into structures
of interest are atlas- and multi-atlas-based segmentation, which
consist of integrating information present in brain MRI atlases
registered to the target image by using different possible label
fusions methods (Cabezas et al., 2011; Asman and Landman,
2013; Wang and Yushkevich, 2013; Pipitone et al., 2014). On
the other hand, relevant improvements in the field of medical
image segmentation have also been obtained by applying other
techniques, such as statistical shape models (Leventon et al.,
2000) or the further integration of tissue classifications into
multi-atlas-based segmentation (Heckemann et al., 2010). In
recent years, very good results have been achieved also by using
deep learning (DL)-based methods, which are being more and
more widely used because of their superior performance in
very diverse medical image segmentation tasks (Ronneberger
et al., 2015; Shelhamer et al., 2017). Therefore, such methods—
and, in particular, those based on the use of convolutional
neural networks—have recently been employed also in several
studies on hippocampal segmentation (segmented either alone
or together with other brain structures) achieving promising
results (Kim et al., 2013; Milletari et al., 2017; Chen et al., 2018;
Thyreau et al., 2018).

To further improve the segmentation accuracy, it is general
practice to incorporate some context information into the
segmentation frameworks. The use of context information,
which enables the inclusion of likelihood and priors into the
segmentation pipeline, has played an important role in computer
vision (Oliva and Torralba, 2007; Tu and Bai, 2010). One example
of context information, which has been widely applied in medical
image segmentation tasks, is the so-called autocontext. This
approach consists of first training one classifier and subsequently
using its output as input to a second classifier (Tu and Bai, 2010;
Chen et al., 2016; Mirikharaji et al., 2018). Several recent studies
have suggested that applying the same strategy to deep neural
networks (DNNs) could also improve the segmentation accuracy
of brain structures (Chen et al., 2018). Another type of context
information can be the tissue-class (Heckemann et al., 2010).
More recently, shape context was proposed to help artificial
neural networks to segment brain structures (Mahbod et al.,
2018). This approach was later extended to DNNs in recent
studies that demonstrated how the inclusion of shape priors into
the segmentation pipeline can increase the robustness of the
network’s segmentation accuracy. Such priors were successfully
employed, for example, by adding a convolutional autoencoder to
a traditional U-Net as shape regularization network (Ravishankar
et al., 2017), by feeding a statistical shape model as an
additional input to a fully convolutional network (FCN) (Wang
and Smedby, 2017), by implementing a Bayesian model that
incorporates a shape prior into a DL-based segmentation result
(Ma et al., 2018), as well as by jointly training an FCN with a level
set (Tang et al., 2017).

In this paper, we investigate whether the integration of shape
information can improve the accuracy also in the context of
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hippocampal segmentation. We analyze the robustness of the
method by both testing it on three different diagnostic groups
of interest [healthy controls (HCs), MCI subjects, and AD
patients] and validating it on a different cohort than the one
used for training. Moreover, we compare the effect of adding
shape context with two other types of context information:
auto-context and tissue-class context. The inclusion of shape
information is obtained by building FCNs that receive as input
both a T1-weighted MRI image and a statistical shape model of
the hippocampus, as already proposed in a previous study on a
different segmentation task (Wang and Smedby, 2017). This is
done by limiting preprocessing as much as possible, in order to
obtain a very fast segmentation (in the order of a few minutes)
that could potentially be integrated in the clinical routine.

MATERIALS AND METHODS

Dataset
For training the networks and validating their performance, 54
T1-weighted structural brain MRI images from the cohort of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack
et al., 2008) were used. The primary goal of ADNI has been to
test whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. All ADNI data are obtainable from
the ADNI database1 and updated information is available at
www.adni-info.org.

Each of the selected 54 images (of size 197 × 233 × 189,
with a voxel size of 1 × 1 × 1 mm3) had already been manually
labeled by experts according to the European AD Consortium
and ADNI Harmonized Hippocampal Protocol (HarP) (Boccardi
et al., 2015b). The used dataset includes images from scanners
of different magnetic field strength (both 1.5 and 3 T) and from
three different diagnostic groups: HCs, AD, and MCI. As shown
in Table 1, the data were selected in such a way that every possible
pair of magnetic field strength and diagnosis is represented by
the same number of subjects (i.e., nine subjects). No further
processing of the images was performed before using them for
training the proposed DL pipelines.

Another dataset was then used for further testing the
performance of the networks trained only on the above-described
ADNI data. It consists of 37 subjects from the AddNeuroMed
cohort (Lovestone et al., 2009; Simmons et al., 2009), including all
the three analyzed diagnostic groups and acquired using scanners
having a magnetic field strength of 1.5 T (see Table 1). All 37
MRI images are high-resolution T1-weighted volumes of size of
193× 229× 193, with voxel size 1× 1× 1 mm. This dataset was
chosen because its acquisition protocols were designed in a way
compatible with the one used for the ADNI cohort (Simmons
et al., 2011; Westman et al., 2011a), so that it is possible to use
those data with a DL network previously trained using ADNI
data. However, differences in terms of MRI scanner types, image
quality, and image size are inevitably present between the two

1adni.loni.usc.edu

TABLE 1 | Description of the training and test datasets.

Cohort Magnetic field
strength

HC AD MCI Number of
subjects

Training and validation of the network

ADNI 1.5 T 9 9 9 27

ADNI 3 T 9 9 9 27

Total number of subjects used for training and validation: 54

Only testing

AddNeuroMed 1.5 T 15 9 13 37

ADNI 1.5 T 213 312 179 704

ADNI 3 T 1799 875 2570 5244

Total number of subjects used only for testing: 5985

The table shows the frequency for the magnetic field strength of the scanners and
the subjects’ diagnosis in the datasets used for training and testing the proposed
hippocampal segmentation pipelines.

datasets, so it is useful to test the networks on the AddNeuroMed
data to check also their performance on images from a new
unknown cohort. Moreover, for those 37 MRI images, manual
hippocampal segmentations were performed by an expert by
following the HarP protocol, so a ground-truth segmentation
mask was available.

Finally, the trained networks were tested also on a separate
large dataset from the ADNI cohort including 5948 T1-weighted
brain images (see Table 1). For these data, ground-truth manual
segmentation masks of the hippocampus were not available.
However, segmentations from FreeSurfer 6.0—processed
through TheHiveDB neuroimaging database (Muehlboeck et al.,
2013)—could be employed to check their consistency with the
result obtained from the DL pipeline.

Segmentation Pipeline
The segmentation methods tested on the data described in the
previous section consist of a maximum of three main steps (see
Figure 1). For each method, a first 3D segmentation is performed
using three orthogonal 2D U-Nets which take the original MRI
image as input. This first segmentation approach is going to be
referred to as MRI U-Net.

Moreover, a second segmentation method is presented, which
adds a further step to the MRI U-Net. It consists of cropping
the original MRI images around both the left and the right
hippocampus (preliminarily segmented by using the MRI U-Net)
and using the cropped images as input to other three orthogonal
U-Nets. This approach is going to be referred to as Cropped
MRI U-Net.

Finally, we propose a third approach that, after cropping the
input MRI images, adds a further step consisting of fitting a
statistical shape model to the segmentation obtained from MRI
U-Net. Three other orthogonal U-Nets are employed, now taking
two images as input: (1) the cropped MRI data and (2) their fitted
shape model. This final methodology is going to be referred to as
Shape MRI U-Net.

MRI U-Net
To perform the first DL-based segmentation, an FCN
architecture was implemented: the so-called U-Net, proposed
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FIGURE 1 | Schematic representation of the implemented segmentation
pipelines. Hippocampal segmentation masks are created by applying all the
three proposed hippocampal segmentation methods: MRI U-Net (in pink);
Cropped MRI U-Net (in green); Shape MRI U-Net (in yellow). All networks
receive T1-weighted MRI volumes as inputs, which, in the case of Cropped
MRI U-Net and Shape MRI U-Net, are cropped around the hippocampus.
Shape MRI U-Net also receives a second input channel that encodes a priori
hippocampal shape information, which is represented as a distance map from
the hippocampal surface (i.e., negative values inside the surface and positive
values outside) obtained after a model fitting step.

by Ronneberger et al. (2015), which has been shown to be
particularly suitable for medical image segmentation tasks. One
of its main strengths is that it can be applied to images of any size,
providing as output a probabilistic label map whose dimension
is proportional to that of the input image. This is achieved by
replacing the fully connected layers of a classical convolutional
neural network with more convolutional layers.

Since the segmentation needs to be performed on 3D brain
volumes, we implemented three separate U-Nets, which make up
the proposed MRI U-Net architecture. Each of these U-Net was
trained independently to segment 2D slices acquired in one of
the three orthogonal views (i.e., axial, coronal, or sagittal). The
original T1-weighted image along with the manual segmentation
is the only input given to the network for training. The final
probability map of the hippocampal segmentation—including
both the left and the right hippocampus—is generated by
averaging the outputs of the three U-Nets. The final binary
segmentation mask (pink box in Figure 1) is obtained by taking
all voxels having a probability of belonging to either the left or
the right hippocampus that is greater or equal to 0.5, i.e., which at
least two of the U-Nets agree on classifying as hippocampus.

Cropped MRI U-Net
Once a binary segmentation mask has been obtained from MRI
U-Net, it is possible to automatically discriminate the left from
the right hippocampus by identifying the two major clusters
of voxels in the segmentation mask using the tool “Cluster”
from FMRIB Software Library (FSL) (Jenkinson et al., 2012).

According to the orientation of the employed images, the right
hippocampus is identified as the cluster whose center of gravity
has the lowest x coordinate, while the left hippocampus is the
remaining cluster.

Once the coordinates of the centers of gravity have been found,
it is possible to crop the original MRI image around both the left
and right hippocampus. In this way, from each subject, two new
3D volumes are obtained, each having the same predefined size
(i.e., 87 × 105 × 111). These cropped volumes are used as input
to the three new orthogonal U-Nets, making up the Cropped MRI
U-Net architecture. Also in this case, the final label map (green
box in Figure 1) is estimated by averaging the outputs of the three
U-Nets and thresholding all voxels having a probability that is
greater or equal to 0.5.

Generation of the Shape Model
The volumetric statistical shape models proposed by Leventon
et al. (2000) were employed to add the shape context to the
DL pipeline. The segmentations used to generate the statistical
model were 12 manual labels for the left hippocampus and 12
for the right hippocampus. The total 24 segmentations were
obtained from 12 images from the ADNI dataset of 54 subjects.
The selection of these images was performed in such a way
that all diagnostic groups were equally included (i.e., four HC,
four AD, and four MCI), so that the model could represent the
variability given by the different diagnoses without overfitting to
a specific group. Moreover, all the selected images were acquired
from scanners having a magnetic field strength of 3 T, in order
to create the model from data of the highest quality available.
The choice of the four subjects for each diagnostic group was
performed randomly.

Three main modifications were performed on the manual
labels. First, each of the 12 images was cropped twice—once
around the left and once around the right hippocampus—so that
each cropped image only included a region of size 87× 105× 111
around one of the regions of interest, similarly to what was done
for the input images described in Section “Cropped MRI U-Net.”
A main advantage of using cropped images also for creating the
shape model is the reduction of computational time, since we are
not interested in analyzing the rest of the 3D volume that does
not include the hippocampus. Second, all labels from the right
hippocampi were mirrored in order to match the orientation of
the left hippocampus and to create a unique model for both sides
together. Finally, each segmentation was up-sampled from 1 to
0.5 mm voxels to improve the resolution of the model. This was
done to include more structural details and at the same time avoid
large images by limiting the volumetric shape representation to
the cropped region.

To generate the model, the mean signed distance function
of each of the 24 manually segmented regions was computed,
together with five main variations extracted via principal
component analysis. Once the model is created, it is possible to fit
it to each label map derived from the previous step (presented in
section “MRI U-Net”) by solving a level set function, as described
by Leventon et al. (2000). This fitting step generates a customized
hippocampal shape that deviates from the mean shape by adding
those variations. The shape fitting step could potentially correct
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for possible segmentation errors and irregularities present in the
MRI U-Net output.

Shape MRI U-Net
The segmentation masks derived from MRI U-Net are cropped
around the centers of gravity of both the left and the right
hippocampus. Each of these two segmented sides can be
associated to its own shape context as described in the previous
section. Such shape context consists of a distance map from
the hippocampal surface obtained after the model fitting step
described in the previous section. In the distance map, the
hippocampal surface corresponds to the zero level set, while all
voxels inside the surface have negative intensity values and all
voxels outside have positive values.

After this, both the cropped original MRI volumes (described
in section “Cropped MRI U-Net”) and the distance maps from
the fitted hippocampal surface are used as inputs to three
new U-Nets, which constitute the Shape MRI U-Net pipeline.
Also in this case, the three networks are trained independently
from scratch in the three different orthogonal views. The final
segmentation mask (yellow box in Figure 1) is estimated by
averaging the outputs of the three U-Nets and thresholding the
voxels having a probability that is greater or equal to 0.5.

Implementation Details
To build the DL architecture, we used the Keras framework2.
The implemented U-Nets are identical to those proposed in the
original paper by Ronneberger et al. (2015). However, to adapt
the images to all the down- and up-sampling steps of the original
implementation, all the original brain MRI data (having size
197 × 233 × 189) are resized to 208 × 224 × 192 for the
first segmentation step, i.e., MRI U-Net. Instead, for the second
(Cropped MRI U-Net) and third (Shape MRI U-Net) approaches,
the input data (87× 105× 111) are resized to 96× 112× 112.

Two different data normalization methods are applied to the
input T1-weighted volumes and the shape context images. For the
latter ones, the voxel intensity is divided by the standard deviation
(computed from all subjects) while keeping the reference point
of 0 that corresponds to the hippocampal surface. As for the
MRI scans, their intensities are first normalized individually by
mapping the lower 5% cutting point of each subject’s histogram
to 0 and the upper 5% to 1. Afterward, the images are also
normalized all together by subtracting the group mean from
all subjects and dividing the intensities by the group standard
deviation, so that the normalized images have zero mean and a
standard deviation of 1.

During the training phase, data augmentation is also
employed by generating mini-batches of data in real-time.
The data generator randomly applies rotations (within a range
of± 10◦), width shifts (range of± 0.1 · total image width), height
shifts (range of± 0.1 · total image height), and zooming (original
100% zoom± 20%).

We used the negative Dice score as the loss function to be
minimized during the training phase. The number of epochs was
always set to 60 for all the three U-Nets of the first pipeline

2https://keras.io

that uses only the T1-weighted volumes as inputs. Instead, for
Cropped MRI U-Net and Shape MRI U-Net, the number of
epochs was reduced to 40 for all the U-Nets.

Alternative Segmentation Methods
The same images used for training and testing our architecture
had also been segmented using the last version (6.0) of
FreeSurfer3, a software tool for image analysis that is freely
available online. It is one of the most commonly used tools for
automatic segmentation of the subcortical white matter and deep
gray matter volumetric structures, including the hippocampus
(Fischl et al., 2002, 2004). For this reason, it was chosen as
a reference method for comparison of the performance of the
pipeline proposed in our work.

To better investigate the contribution given by adding
the shape-model-fitting step, we compared the performance
of our proposed pipelines with two alternative types of
context information too. They were integrated in the following
two networks:

Tissue MRI U-Net
The hippocampus is a gray matter structure that borders
with other tissue types in specific locations, so a priori tissue
type classification could help the network to identify the
boundaries of the hippocampus. Therefore, three main tissue type
segmentations (i.e., gray matter, white matter, and cerebrospinal
fluid) are used as context input to the network to be integrated to
the cropped MRI image. Such segmentations could be obtained
automatically from the original MRI image by using the FMRIB’s
Automated Segmentation Tool (FAST) from FSL (Zhang et al.,
2001; Jenkinson et al., 2012). The network thus has four input
channels in total: the cropped MRI image (obtained in the same
way as in Cropped MRI U-Net and Shape MRI U-Net), as well as
the three tissue segmentations (cropped in the same location as
the T1-weighted images).

Autocontext MRI U-Net
The autocontext strategy is used: the cropped segmentation
derived from MRI U-Net is given as second input channel to the
network. This technique is one of the most well-known types
of context information (Tu and Bai, 2010; Chen et al., 2016;
Mirikharaji et al., 2018) and we aimed at investigating its effect
also on our application of interest.

Method Evaluation
Single-Cohort Evaluation
The proposed methods were first evaluated using ninefold cross-
validation on the first dataset of 54 subjects from the ADNI
cohort, for which manual hippocampal segmentations were
available and used during training. For each fold, 48 of the cases
were used for training and the remaining six for testing, and
the test set always included all the six possible combinations of
magnetic field strength and diagnosis presented in Table 1. When
the shape context was included in the pipeline, the shape model

3http://surfer.nmr.mgh.harvard.edu/

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 14 | Article 15

https://keras.io
http://surfer.nmr.mgh.harvard.edu/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00015 January 22, 2020 Time: 19:37 # 6

Brusini et al. Hippocampal Segmentation Using Shape Information

described in Section “Generation of the Shape Model” was always
the same and not re-created for each fold.

The evaluation metrics used to analyze the accuracy were the
Dice score, precision, recall, and Hausdorff distance. The Dice
score (Dice, 1945) is an index that measures the degree of overlap
between two segmentation masks with values between 0 (no
overlap) and 1 (matching segmentations). When comparing a
hippocampal segmentation result with its ground truth, we can
define as “true positives” (TP) the number of voxels correctly
classified as belonging to the hippocampus and “false positives”
(FP) those wrongly classified as belonging to the hippocampus.
On the other hand, voxels correctly classified as background are
“true negatives” (TN) and those wrongly classified as background
are “false negatives” (FN). Given these definitions, we could
estimate the Dice score as 2 TP

2TP+FP+FN , the precision as TP
TP+FP ,

and the recall as TP
TP+FN . Finally, as regards the Hausdorff

distance, since it is a metric that tends to be highly sensitive to the
presence of outliers (Huttenlocher et al., 1993; Taha and Hanbury,
2015), we applied the quantile method proposed by Huttenlocher
et al. (1993). This method consists of, first of all, computing the
closest distance between every point of a segmentation mask and
the ground-truth. After this, these computed distances are sorted
(from the lowest to the highest) and, instead of simply identifying
their maximum value (i.e., the classical Hausdorff distance), their
qth quantile is reported. In particular, in this paper, the 95th
percentile of the distances was computed for each subject.

Cross-Cohort Evaluation
Once the segmentation pipelines had been trained and validated
as described above, they were tested on a new unseen dataset
of 37 subjects from the AddNeuroMed cohort. Since ground-
truth segmentation masks were available for this dataset, the same
evaluation metrics described in the previous section were used.
Moreover, the performance differences between the methods
were analyzed by carrying out pairwise comparisons between
the evaluation metrics obtained from all the tested DL-based
pipelines. This was done by defining a mixed-effect analysis of
variance model with the segmentation methods and the sides
(i.e., left or right) as fixed effects, the subjects as random effect,
and the resulting evaluation metrics as dependent variables. The
statistical calculation was performed in Stata 13.1 (StataCorp,
College Station, TX, United States).

Finally, the same networks were also trained on the
AddNeuroMed dataset and tested on the ADNI dataset, which
had previously been used as training set. Dice score, precision,
recall, and Hausdorff distance were computed. This was done
in order to further investigate the effect of training the
pipelines on data from a certain cohort and testing them on a
new unseen cohort.

Evaluation on a Larger ADNI Dataset
As a final test of the trained networks, the proposed DL-
based segmentation methods, which were trained on the
above-described ADNI dataset of 54 subjects, were also
applied on a separate larger dataset of 5948 T1-weighted
brain images still from the ADNI cohort. Given the large
amount of data and the consequently long time needed to

perform all the segmentations, we only tested two pipelines
in this phase: one not including shape information—
MRI U-Net—and one including such information—Shape
MRI U-Net.

For this dataset, ground-truth manual segmentation masks
of the hippocampus were not available, but segmentations from
FreeSurfer 6.0 could be easily obtained. Therefore, they were
employed to check their consistency with the result obtained
from the DL pipelines. This choice was motivated by the
fact that FreeSurfer is still among the most commonly used
software for brain image analysis. Thus, a similarity between
our results and those from FreeSurfer could allow us to the
test the potential of our methods to possibly replace one tool
that is already well-known and established. Such consistency was
analyzed by computing the correlation between the FreeSurfer
volumes and those obtained through each DL-based pipeline.
Moreover, two additional shape similarity metrics (i.e., Dice score
and Hausdorff distance) were also computed to evaluate the
similarity between the results from the proposed pipelines and
those from FreeSurfer.

In addition, given the large amount of data in this dataset,
we investigated whether our segmentation results could reflect
the volumetric changes in the hippocampus between the three
diagnostic group of interest, i.e., AD, MCI, and HC. This
was done by selecting all subjects whose diagnosis did not
change within 2 years after the first MRI scan. Subsequently,
we computed, for each subject, the hippocampal volume at
baseline and divided it by the total intracranial volume (ICV),
which is one of the outputs measurements (eTIV, estimated
total ICV) given by FreeSurfer 6.0. This normalization is often
used in literature in order to have a more reliable estimation
of atrophy caused by neurodegeneration (Voevodskaya et al.,
2014). This measurement was then multiplied by the average
ICV for all the subjects of interest. A one-way ANOVA
test was then employed to identify whether a statistically
significant difference (p < 0.05) could be found between the
groups. Moreover, the normalized volumes were also used
to fit three binary logistic regression models (i.e., for AD
vs. HC, AD vs. MCI, and MCI vs. HC) to investigate the
possibility of predicting the diagnosis of one subjects from
the above-described volumetric measurements. In particular,
each model was generated to provide as output the probability
of a subject to belong to a certain diagnostic group as a
function of the hippocampal volume multiplied by the ratio
between the ICV and the specific subject’s ICV. The prediction
power of each binary model was analyzed by computing three
evaluations metrics: area under the curve (AUC), sensitivity,
and specificity.

Finally, in this dataset, 2704 of the scans were repeated twice
on the same subject, with the same scanner and at the same time
point (within the same week). This allowed us to perform a test–
retest analysis to make sure that the implemented methods are
reproducible and consistent between the two subsequent scans.
Therefore, for each of the tested methods, we computed the
concordance correlation coefficient (CCC) (Lin, 1989) between
the hippocampal volumes from the two subsequent scans.
This coefficient describes the agreement between two different
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measurements of the same variable. CCC varies between –1 and
1, and CCC = 1 indicates perfect reproducibility.

RESULTS

Single-Cohort Evaluation
The performance of the three types of context-aware
segmentation methods was evaluated on the first ADNI dataset
of 54 subjects through ninefold cross-validation and compared
between the preliminary segmentation step (MRI U-Net) and
the additional steps using only cropped data (Cropped MRI
U-Net) or cropped data together with shape context (Shape MRI
U-Net), as shown in Table 2. No relevant differences were found
between the three methods, which showed quite consistent
results on both the left and the right hippocampus. Among all
the tested DL-based methods, Tissue MRI U-Net showed the
worst performance, having a slightly lower accuracy and higher
Hausdorff distance in average compared to the other methods.

The average Dice score was also estimated within each of the
three diagnostic groups (HC, AD, and MCI). This was done to
check whether the system has a consistent performance across all
possible forms of hippocampal integrity. As shown in Figure 2,
all diagnostic groups showed a similar segmentation accuracy in
both the left and right hippocampus by using the three proposed
methods. However, the AD patients always presented a slightly
lower Dice score (1 or 2% lower in average) with respect to the
other two subject groups.

As presented in Table 2, our methods yielded better values
than FreeSurfer in all the considered evaluation metrics. This
applies also for the comparison between diagnostic groups (see
Figure 2), in which, contrary to the proposed DL methods,
FreeSurfer showed a higher performance loss when dealing with
MCI and—even more—AD subjects, compared to the HCs.

In order to better understand the influence of each of the
three independent U-Nets (one for each view) toward the
final segmentation, we also computed the evaluation metrics
separately for each U-Net (see Supplementary Table S1). These

results showed how, for MRI U-Net, the highest accuracy is
obtained on the axial view. By contrast, for Cropped MRI U-Net
and Shape MRI U-Net, the highest accuracy can be observed
on the coronal view. However, while no big differences can be
found across all views in MRI U-Net and Shape MRI U-Net,
Cropped MRI U-Net showed an evident decrease in performance
on the sagittal view in terms of Dice score, precision, and
Hausdorff distance.

Moreover, the present methods were proven to be more
efficient also in terms of computational time, at least when only a
hippocampal segmentation is desired. On a personal computer
with an Nvidia GTX 1080 graphic card and 32 GB of RAM,
each segmentation took between 25 and 30 s with the simple
MRI U-Net methodology. When performing one segmentation
with Cropped MRI U-Net, approximately 1 min was taken. Using
Shape MRI U-Net, about two and a half minutes was needed
for one subject.

Cross-Cohort Evaluation
Testing on the AddNeuroMed Dataset
When the proposed segmentation pipelines were tested on the
new unseen dataset from the AddNeuroMed cohort, larger
differences between the tested methods could be observed
(see Table 3).

The accuracy achieved by segmenting the MRI images
using the MRI U-Net architecture is now very close to that
obtained by using FreeSurfer 6.0. In particular, the two methods
have almost identical Dice scores, while the precision and
recall are, respectively, decreased and increased by using MRI
U-Net. Moreover, FreeSurfer has a slightly higher Hausdorff
distance in average.

When performing the segmentation using the other two
proposed pipelines, an improvement in the performance can be
observed. Dice score, precision, and recall positively increased
by using the Cropped MRI U-Net architecture and, even more,
the Shape MRI U-Net. The benefit of adding shape context
was particularly noticed in the right hippocampus, where the
average Dice score increased by 4.04% with respect to MRI U-Net

TABLE 2 | Single-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 90.17 ± 1.44% 89.46 ± 2.20% 90.96 ± 2.29% 2.33 ± 0.55

Cropped MRI U-Net 90.28 ± 1.30% 89.36 ± 2.20% 91.28 ± 1.85% 2.22 ± 0.53

Shape MRI U-Net 90.01 ± 1.41% 88.55 ± 2.69% 91.60 ± 1.87% 2.35 ± 0.67

Tissue MRI U-Net 88.79 ± 1.61% 86.79 ± 2.72% 91.01 ± 2.94% 2.39 ± 0.60

Autocontext MRI U-Net 89.45 ± 1.46% 86.69 ± 2.77% 92.53 ± 2.75% 2.30 ± 0.57

FreeSurfer 6.0 79.52 ± 3.14% 82.94 ± 5.01% 76.60 ± 3.94% 4.34 ± 1.08

Right hippocampus MRI U-Net 90.12 ± 1.41% 89.59 ± 2.48% 90.77 ± 2.72% 2.39 ± 0.53

Cropped MRI U-Net 90.26 ± 1.41% 89.29 ± 2.62% 91.35 ± 2.39% 2.47 ± 0.59

Shape MRI U-Net 90.08 ± 1.67% 88.50 ± 3.39% 91.86 ± 2.34% 2.54 ± 0.79

Tissue MRI U-Net 88.74 ± 1.50% 86.4 ± 2.84% 91.00 ± 3.16% 2.63 ± 0.70

Autocontext MRI U-Net 89.63 ± 1.32% 87.25 ± 2.81% 92.30 ± 2.89% 2.39 ± 0.53

FreeSurfer 6.0 80.21 ± 3.86% 83.63 ± 4.35% 77.31 ± 5.36% 4.50 ± 1.23

The performance of the proposed methods (in terms of Dice score, precision, recall, and Hausdorff distance) was computed through ninefold cross validation and
compared with that of FreeSurfer 6.0. All evaluation metrics are expressed as mean ± standard deviation.
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FIGURE 2 | Difference in segmentation accuracy (from cross validation) between the three analyzed diagnostic groups (HC, MCI, and AD). The accuracy is
expressed as the Dice score averaged across all subjects and is represented with histograms for each of the tested methods (see color legend). The error bars show
the standard deviation of the Dice score.

(compared to + 2.70% obtained with Cropped MRI U-Net),
the average precision by 3.40% (compared to + 1.43%), and
the average recall by 5.03% (compared to + 4.47%). For the
left hippocampus, the difference between Cropped MRI U-Net
and Shape MRI U-Net was less evident, but in both cases, all
evaluation metrics increased by approximately 4% with respect
to MRI U-Net.

Also for this analysis, we calculated the evaluation metrics
separately for each independent 2D U-Net (see Supplementary
Table S2). Similarly to what has been obtained for the single-
cohort analysis, MRI U-Net showed its best accuracy on the axial

input slices, while with Cropped MRI U-Net and Shape MRI
U-Net no relevant differences could be noticed between coronal
and axial views. Moreover, most of the single 2D U-Nets of
Cropped MRI U-Net showed a lower performance compared to
Shape MRI U-Net, whose results are also more consistent across
views. In particular, the sagittal 2D U-Net of Cropped MRI U-Net
was still shown to have a very high Hausdorff distance compared
to all other views and approaches, as well as particularly low Dice
score and precision.

The two alternative integrations of context information did
not achieve a better performance than the proposed methods. In
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TABLE 3 | First cross-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 79.09 ± 2.63% 74.72 ± 4.27% 84.23 ± 3.15% 3.44 ± 0.74

Cropped MRI U-Net 84.44 ± 2.32% 78.47 ± 4.17% 91.60 ± 2.47% 3.19 ± 0.64

Shape MRI U-Net 84.92 ± 2.56% 79.46 ± 5.03% 91.57 ± 3.60% 3.16 ± 0.77

Tissue MRI U-Net 84.32 ± 2.16% 79.04 ± 4.12% 90.59 ± 2.90% 3.33 ± 0.85

Autocontext MRI U-Net 80.55 ± 2.61% 73.99 ± 4.23% 88.67 ± 3.50% 3.33 ± 0.72

FreeSurfer 6.0 79.41 ± 3.77% 78.89 ± 5.46% 80.20 ± 4.39% 4.24 ± 1.25

Right hippocampus MRI U-Net 80.15 ± 2.25% 74.54 ± 3.12% 86.80 ± 3.08% 3.92 ± 1.14

Cropped MRI U-Net 82.85 ± 2.52% 75.97 ± 3.91% 91.27 ± 2.31% 3.80 ± 1.05

Shape MRI U-Net 84.19 ± 2.50% 77.94 ± 4.49% 91.83 ± 3.28% 3.62 ± 1.04

Tissue MRI U-Net 82.88 ± 2.35% 76.86 ± 3.60% 90.08 ± 2.71% 3.68 ± 1.11

Autocontext MRI U-Net 80.51 ± 2.20% 73.08 ± 3.27% 89.79 ± 3.03% 3.88 ± 1.16

FreeSurfer 6.0 79.57 ± 3.54% 77.71 ± 5.53% 81.78 ± 3.40% 4.61 ± 1.11

The performance of the proposed methods (in terms of Dice score, precision, recall, and Hausdorff distance) was tested on a new unseen dataset from a different cohort
(i.e., AddNeuroMed cohort) than the one used for training. The performance is reported also for the segmentations obtained using FreeSurfer 6.0 on the same data. All
evaluation metrics are expressed as mean ± standard deviation.

particular, Autocontext MRI U-Net showed a very similar result
to MRI U-Net. Instead, with Tissue MRI U-Net, the performance
is comparable to that of Cropped MRI U-Net and Shape MRI
U-Net, but never outperforming them in any of the analyzed
evaluation metrics.

As shown in Supplementary Table S3, a statistically
significant difference (i.e., p < 0.05 with Bonferroni correction)
was found in the majority of the pairwise comparisons between
the tested segmentation methods for all the evaluation metrics,
except for the Hausdorff distance. The value of this latter metric
is indeed quite consistent across all DL-based methods (except
for the difference between Shape MRI U-Net and MRI U-Net,
which resulted to be significant). Significantly larger Hausdorff
distances were, however, always found when using FreeSurfer
6.0 as opposed to the pipelines implemented in the present
work. Moreover, the choice of the subject to be segmented—
and, subsequently, the image quality, as well as the level of
degeneration—was found to highly influence the performance.
Figure 3 shows how, for each subject, the evaluation metrics
tended to vary with a consistent pattern according to the method
being used and maintained a rather similar between-subject
variability within each method.

The average Dice scores for each diagnostic group from the
AddNeuroMed dataset were also analyzed, as shown in Figure 4.
The results reflect what has been observed on the whole dataset
(i.e., averaging the results across all 37 subjects): both Cropped
MRI U-Net and Shape MRI U-Net showed a superior accuracy
compared to MRI U-Net, and in general the DL-based methods
performed better than FreeSurfer 6.0.

Testing on the ADNI Dataset
All the implemented networks were re-trained using the data
from the AddNeuroMed cohort in order to be tested on the
54 subjects from the ADNI cohort that had previously been
used for training. Average Dice score, precision, recall, and
Hausdorff distance were computed and presented in Table 4.
The results are rather consistent with what has been found for
the first cross-cohort evaluation presented in Section “Testing on

the AddNeuroMed Dataset.” The average Dice scores for MRI
U-Net and Autocontext MRI U-Net are very similar to those
obtained using FreeSurfer 6.0, while they increase when using
Cropped MRI U-Net and Shape MRI U-Net. However, in this
case, the best results in terms of Hausdorff distance could be
found in Autocontext MRI U-Net, followed by the Shape MRI
U-Net implementation.

Two major differences could be found compared to the
previous cross-cohort evaluation. First, Tissue MRI U-Net
showed a much worse performance in terms of Dice score,
precision, and recall. Second, all the other deep-learning based
methods resulted in having both higher precision and lower recall
compared to the previous analysis.

Testing on a Larger ADNI Dataset
The 5948 additional cases from the ADNI cohort were segmented
using the networks trained on the above-described balanced
ADNI dataset of 54 subjects. The correlation coefficients of the
volumetric results were rather high and consistent between each
of the two tested pipelines and FreeSurfer, as can be observed in
Figure 5. For the sake of completeness, we also computed the
correlation between the two present U-Net based pipelines as
well, which resulted in a correlation coefficient of 0.952 for the
left and 0.958 for the right hippocampus. Thus, there is a higher
correlation between the tested DL-based pipelines than between
either of these pipelines and FreeSurfer.

The scatter plots of Figure 5 highlight the presence of a few
outliers, whose number appears to be higher using MRI U-Net
but decreases with Shape MRI U-Net. For each of the proposed
pipelines, we computed the hippocampal volume of every
subject—obtained after applying one of the given segmentation
pipelines—divided by the hippocampal volume obtained, instead,
from FreeSurfer on the same subject. These ratios were then
used to extract a measure of the amount of outliers. We defined
as outliers all those subjects that, for a specific segmentation
pipeline, showed a volumetric ratio deviating from the median
ratio by at least three times the median absolute deviation. The
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FIGURE 3 | Variability of the performance within subjects on the AddNeuroMed test dataset. The plots are showing how, for each subject (see color legend), the
evaluation metrics (on the vertical axes) change according to the segmentation method (on the horizontal axes) being used. Each of the four plots represents one
specific evaluation metric: Dice score (top left), precision (top right), recall (bottom left), and Hausdorff distance (bottom right).

results confirmed what could be seen from the plot. Indeed,
for the left and right hippocampus, respectively, 104 and 140
outliers were identified using MRI U-Net, while 84 and 96 using
Shape MRI U-Net. Of these subjects, 14 appeared as outliers
(for both left and right hippocampus) in all three pipelines. All
these 14 cases were either MCI subjects or AD patients and
examples of the segmentation results in some of those are shown
in Figure 6. An expert was asked to compare the segmentations
obtained from FreeSurfer with those from MRI U-Net (which,
as in Figure 6, was chosen as reference DL-based segmentation
method for this evaluation) in these 14 subjects. In all 14
cases, FreeSurfer showed segmentation errors. With MRI U-Net,
instead, three out of these 14 cases showed good segmentation
results, five out of 14 showed inaccurate but better results
than FreeSurfer, while the remaining six cases were classified as
segmentation errors in the same manner as FreeSurfer. Moreover,
in Figure 5, the plot for the left hippocampal segmentation using
MRI U-Net and both plots for the right hippocampus show one
specific point that has a very low volume (in some cases very close
to zero). This point corresponds to the same subject in all of these
three cases. The original MRI scan of this subject was visually

inspected, and it was found to be affected by artifacts that made
the identification of the hippocampus particularly challenging.
The result obtained on the same subjects on the left hippocampus
using Shape MRI U-Net was also inaccurate, even if characterized
by a larger amount of voxels.

Two additional similarity metrics (i.e., Dice score and
Hausdorff distance) have been computed to compare the results
from FreeSurfer with those from both MRI U-Net and Shape MRI
U-Net (see Supplementary Table S4). These results showed a
rather high consistency between these methods, with an average
Dice score close to 79% for the comparison with MRI U-Net, and
around 82% for Shape MRI U-Net. Also the Hausdorff distance
was rather low (i.e., around 4 voxels in average) for all methods.

We also investigated whether there is a statistically significant
difference in the normalized hippocampal volume between the
three diagnostic groups of interest, i.e., AD, MCI, and HC.
All the three analyzed segmentation methods (MRI U-Net,
Shape MRI U-Net, and FreeSurfer 6.0) resulted in statistically
significant differences between all three diagnostic groups. As
can be seen in Table 5, the lowest normalized hippocampal
volumes were always found in the AD patients, and the highest
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FIGURE 4 | Difference in segmentation accuracy (on the AddNeuroMed test dataset) between the three analyzed diagnostic groups (HC, MCI, and AD). The
accuracy is expressed as the Dice score averaged across all subjects and is represented with histograms for each of the tested methods (see color legend). The
error bars show the standard deviation of the Dice score.

in the HCs. We then investigated the diagnostic prediction
power by computing the AUC, sensitivity, and specificity of
three logistic regression models that were fitted to classify AD
vs. HC, AD vs. MCI, and MCI vs. HC by using the above-
mentioned normalized measurements. The results, which are
reported in Table 6, show that, for all three segmentations
methods, a rather good prediction power is achieved when
comparing AD subjects and HC, with a AUC that is above 0.80.
Instead, the task of distinguishing AD from MCI and MCI from
HC subjects is more challenging, with an AUC of 0.68 for all
three methods in the classification of AD vs. MCI and slightly

lower AUCs for the classification of MCI vs. HC. Sensitivity and
specificity measurements are also shown to be consistent with
the AUC across methods and classification tasks. Moreover, the
DL-based methods have also shown to have a slightly higher
performance compared to FreeSurfer, given their overall higher
evaluation metrics.

Finally, in this dataset, we computed the CCCs between the
hippocampal volumes from all the available pairs of subsequent
test–retest scans from the same subject at the same time
point. For the left and right hippocampus, respectively, the
CCC resulted in 0.988 and 0.977 with Shape MRI U-Net,
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TABLE 4 | Second cross-cohort evaluation.

Region of interest Segmentation method Dice score Precision Recall Hausdorff distance (in voxels)

Left hippocampus MRI U-Net 80.26 ± 3.93% 87.92 ± 3.72% 74.03 ± 5.48% 3.52 ± 0.85

Cropped MRI U-Net 84.56 ± 2.45% 88.12 ± 2.77% 81.42 ± 4.00% 3.44 ± 0.82

Shape MRI U-Net 85.06 ± 2.47% 87.85 ± 3.08% 82.57 ± 3.72% 3.34 ± 0.74

Tissue MRI U-Net 73.39 ± 8.93% 75.66 ± 8.90% 71.40 ± 9.45% 4.30 ± 1.04

Autocontext MRI U-Net 79.64 ± 7.50% 77.37 ± 7.84% 82.14 ± 7.56% 3.00 ± 0.75

FreeSurfer 6.0 79.52 ± 3.14% 82.94 ± 5.01% 76.60 ± 3.94% 4.34 ± 1.08

Right hippocampus MRI U-Net 82.00 ± 3.42% 90.42 ± 2.99% 75.28 ± 5.54% 3.79 ± 0.74

Cropped MRI U-Net 85.62 ± 1.92% 88.56 ± 2.93% 83.03 ± 3.68% 3.54 ± 0.80

Shape MRI U-Net 86.06 ± 2.01% 88.20 ± 3.46% 84.21 ± 3.70% 3.47 ± 0.88

Tissue MRI U-Net 73.59 ± 6.64% 75.42 ± 6.97% 72.03 ± 7.30% 4.19 ± 0.88

Autocontext MRI U-Net 79.24 ± 6.07% 77.19 ± 6.41% 81.52 ± 6.37% 3.03 ± 0.60

FreeSurfer 6.0 80.21 ± 3.86% 83.63 ± 4.35% 77.31 ± 5.36% 4.50 ± 1.23

The proposed pipelines were re-trained on the dataset from the AddNeuroMed cohort and tested on the data from the ADNI cohort, which were previously used
for training. The performance of the methods is presented in terms of Dice score, precision, recall, and Hausdorff distance. The performance is reported also for the
segmentations obtained using FreeSurfer 6.0 on the same data. All evaluation metrics are expressed as mean ± standard deviation.

0.989 and 0.986 with MRI U-Net, and in 0.969 and 0.963
with FreeSurfer 6.0.

DISCUSSION

Comparison Between the Implemented
Pipelines
In this work, three different U-Net based segmentation pipelines
were proposed: MRI U-Net, Cropped MRI U-Net, and Shape
MRI U-Net. All three methods were shown to be accurate and
quick tools for the automatic segmentation of the hippocampus
from brain MRI data.

Single-Cohort Analysis
The first presented method, MRI U-Net, constitutes the simplest
architecture, which takes the original MRI image as input
and performs the segmentation using three orthogonal U-Nets.
When testing its performance through cross validation on 54
subjects from the ADNI dataset, it was shown to achieve
an excellent accuracy (average Dice score of approximately
90%) which was equal to each of the other two proposed
and more elaborate methods (Cropped MRI U-Net and Shape
MRI U-Net). It also yielded higher accuracy than the software
FreeSurfer. To some extent, this was expected since the
segmentation protocol of the ground-truth masks coincides
with that used to train the network, while it inevitably differs
from the atlas on which the FreeSurfer segmentation is based
(Fischl et al., 2002). However, given the very high difference
in performance between the two methods (i.e., around 10%
of improvement in the Dice score), we believe that such
comparison is valuable and worth being reported in order to
give a measure of how DL-based methods are outperforming
older—but still widely used and established—brain image
processing software.

These results suggest that, when the training and test set come
from the same cohort, the use of the simple T1-weighted scan
as input image is more efficient than both using just a portion

of the scan (cropped around the hippocampus) and including
context information. The step of cropping the image around
the hippocampus is probably not needed for the network to
increase its performance because data from the same cohort have
the same size and very similar scanning quality, and therefore
the localization and size of the hippocampal region is quite
consistent across images. As regards the lack of improvement
by adding shape context layers, it is probably due to the fact
that a high accuracy can already be reached by using the
preliminary single-channel networks and, as already observed
in a previous study (Wang and Smedby, 2017), the inclusion
of shape information is most valuable when the structure to be
segmented is rather challenging.

The analysis of each independent U-Net (i.e., trained for
each view separately) was also useful to better understand the
differences between the three approaches, which, globally, seem
to be very similar to each other. The coronal view is typically the
most used view to perform manual hippocampal segmentation.
However, its morphological details are not always sufficient to
achieve an accurate results, so the axial and sagittal views have to
be checked as well (Boccardi et al., 2015a). Therefore, a superior
performance on the coronal view was expected on all the trained
U-Nets. However, in MRI U-Net, the best performing network
was shown to be the one trained on axial slices, suggesting that
this model is able to capture some important image features
that differ from those used by the human raters. On the other
hand, both Cropped MRI U-Net and Shape MRI U-Net showed a
slightly superior performance on the coronal view, which is more
consistent with what happens in practice when the segmentation
is performed by expert radiologists. Moreover, Cropped MRI
U-Net resulted in a relevantly low performance on the sagittal
view compared to all other views. In particular, the high average
Hausdorff distance suggests the presence of several geometric
errors, which are then corrected by integrating the information
from the other two views. This could not be observed on Shape
MRI U-Net, suggesting that the use of shape information on
the sagittal view can help to prevent the occurrence of such
geometric errors.
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FIGURE 5 | Correlation between the volume of the segmentations obtained using the proposed methods (on the large ADNI test dataset) and those from FreeSurfer
6.0. The Pearson correlation coefficient (r) is reported together with its 95% confidence interval (95% CI). Results are reported for both the left (top row) and right
(bottom row) hippocampus, and for both MRI U-Net (pink) and Shape MRI U-Net (yellow) in comparison with FreeSurfer 6.0. The volumes are plotted and expressed
in terms of number of voxels in the region of interest.

Cross-Cohort Analysis
When the networks trained on the ADNI cohort were tested on a
dataset from the AddNeuroMed cohort, the observed differences
between the three implemented architectures were subject to a
consistent change.

In terms of overall accuracy, MRI U-Net and FreeSurfer, which
both process the data by receiving as input only the original T1-
weighted image, showed a very similar performance. The main
difference between them is a lower precision and higher recall
obtained, in average, by using MRI U-Net. The lower precision
may be due to an over-estimation of the hippocampal mask in
regions where hippocampal atrophy is present. This suggests the
difficulties of training a network with enough atrophic patterns to
be able to obtain accurate segmentations also on new unseen data.
On the other hand, the under-estimations obtained by FreeSurfer

may be related to other types of segmentation errors in atrophic
hippocampal areas as well, as suggested also by the general
decrease in performance in MCI and AD subjects (Figure 4). This
issue will be subject to future investigations.

Furthermore, a clearly higher accuracy was now observed by
employing Cropped MRI U-Net and, even more, Shape MRI
U-Net. Therefore, when segmenting new unseen data that differ
from those used during training (for example, in terms of image
size, scanner types, and image quality), it seems to be motivated
to perform a further processing step adding information to the
simple MRI scan. A big improvement in the accuracy was seen
already by simply cropping the image around the center of gravity
of the preliminary hippocampal segmentation, suggesting that
already this step largely harmonizes the input images to those
used during training. This could be explained by the fact that
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FIGURE 6 | Comparison between the segmentation result obtained from
using MRI U-Net and the one from FreeSurfer 6.0 in some examples slices of
different subjects from the large ADNI test dataset. The yellow areas indicate
the overlap between the two segmentation results, the light blue ones
correspond only to the MRI U-Net segmentation, and the red ones only to the
FreeSurfer segmentation. All represented subjects belong to the group of 14
cases for which the ratio between the deep-learning based volumes (from all
three pipelines) and the volume from the FreeSurfer segmentation had a value
that was considered as outlier. In (A) and (B), FreeSurfer over-estimates the
hippocampal region compared to MRI U-Net that achieves a more reliable
estimation. In (C), an unusual shape of the anatomical gyri surrounding the
hippocampus is present and both methods result in some segmentation
errors, but MRI U-Net achieves a more accurate result compared to the large
overestimation obtained by using FreeSurfer.

the second U-net is dealing with a much smaller field of view
therefore is less likely to be disturbed by imaging or structure
changes outside the core region. On the other hand, compared
to Cropped MRI U-Net, the inclusion of shape context layers
was also shown to lead to slight, but yet statistically significant,
improvements in terms of Dice score and precision. This result
supports what has already been observed in the previous section:
when a high accuracy in the segmentation is achieved from the
simple MRI U-Net implementation, adding shape information
does not improve the result; on the other hand, when the MRI
U-Net segmentation is more challenging (for example, in this
case, due to discrepancies between training and test data), the
shape context layers—together with the cropping step—can help
to increase the accuracy.

The computation of the evaluation metrics for each
independent 2D U-Net also allowed to highlight certain

differences between the three approaches that cannot be
captured from their global performance. In general, by analyzing
the performance of each view independently, the advantage of
using Cropped MRI U-Net over MRI U-Net is less noticeable,
given its larger differences between views in terms of accuracy,
as well as generally higher Hausdorff distance. However, as
described above, merging the information from all views
together seem to stabilize the result and discard many of the
FP that affect the simple 2D-based results. This highlights
the importance of integrating information from all views
together in order to obtain more reliable segmentation results.
This is very consistent with what is suggested for the manual
HarP segmentation protocol, i.e., the segmentation must be
performed using all views together in order to achieve accurate
results. Moreover, similarly to what was observed for the
single-cohort analysis, the inclusion of shape context appears
again useful to improve the performance not only globally in
3D, but also on a 2D basis. Its performance on all views is
indeed superior to the one of both Cropped MRI U-Net and of
MRI U-Nets.

The positive contribution of adding the step of shape model
fitting is further supported by the comparison with two other
types of context information. Indeed, Shape MRI U-Net was
found to be the most successful method among all those
tested. The difference between Shape MRI U-Net and all other
approaches was indeed shown to be statistically significant
for most of the evaluation metrics. In particular, as regards
Autocontext MRI U-Net, we believe that the network tends to
learn mainly from the first U-Net-based segmentation without
extracting much more information from the T1 volume. This
would explain why there is no real improvement in performance
and its accuracy is rather similar to that of MRI U-Net. In the
case of Tissue MRI U-Net, instead, we think that automatic
tissue types segmentations may tend to fail in some locations.
Therefore, this would provide “misleading” information as input
to the network, which makes this approach not robust.

The above-discussed observations could be made also when
training and test set were switched. Indeed, the average evaluation
metrics were quite consistent to those of the first cross-cohort
analysis and, also in this case, Shape MRI U-Net showed,
overall, the best performance. Only two main differences could
be found compared to the previous analysis. First of all, the
accuracy of Tissue MRI U-Net got much worse. This could
be justified by the fact that, in the AddNeuroMed dataset, the
image quality is generally lower, also because of the field strength
that is limited to 1.5 T in all subject. This may lead to more
imprecise tissue type segmentations used during training, which
cause a further degrading of the performance during the test
phase on a new dataset. Moreover, for all the other DL-based
pipelines, the precision and the recall were, respectively, higher
and lower compared to the previous analysis. This result was
expected because the training and test sets have been simply
switched and therefore possible over-estimations in the first
cross-cohort evaluation are likely to result in under-estimations
in the second one.

Finally, it should be noted that, despite the increase in
performance with Shape MRI U-Net on both cross-cohort
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TABLE 5 | Volumetric differences in the hippocampal volume between diagnostic groups in a subset of subjects from the large ADNI test dataset.

Region of interest Segmentation method AD (n = 93) MCI (n = 267) HC (n = 154) p-value (one-way ANOVA)

Left hippocampus MRI U-Net 3.54 ± 0.66 cm3 3.95 ± 0.60 cm3 4.30 ± 0.54 cm3 p < 0.001

Shape MRI U-Net 3.67 ± 0.60 cm3 4.04 ± 0.59 cm3 4.39 ± 0.51 cm3 p < 0.001

FreeSurfer 6.0 3.25 ± 0.60 cm3 3.60 ± 0.63 cm3 3.99 ± 0.58 cm3 p < 0.001

Right hippocampus MRI U-Net 3.38 ± 0.66 cm3 3.81 ± 0.66 cm3 4.25 ± 0.54 cm3 p < 0.001

Shape MRI U-Net 3.56 ± 0.61 cm3 3.93 ± 0.62 cm3 4.34 ± 0.50 cm3 p < 0.001

FreeSurfer 6.0 3.16 ± 0.59 cm3 3.50 ± 0.63 cm3 3.89 ± 0.54 cm3 p < 0.001

For each subject, the hippocampal volume was multiplied by the ratio between the average ICV and the specific subject’s ICV. Results are reported for baseline
measurements as mean ± standard deviation for each of the three diagnostic groups of interest, i.e., AD patients, MCI subjects, and healthy controls. Only subjects
whose diagnosis did not change within 2 years after the first measurement were selected. The number of subject n in each group is indicated in brackets. For each
method, a one-way ANOVA test was conducted for comparing the three diagnostic groups.

TABLE 6 | Prediction power of using the normalized hippocampal volume
measurements to classify AD vs. HC, AD vs. MCI, and MCI vs. HC.

Segmentation method AD vs. HC AD vs. MCI MCI vs. HC

MRI U-Net AUC = 0.85 AUC = 0.68 AUC = 0.67

Sensitivity = 0.75 Sensitivity = 0.60 Sensitivity = 0.62

Specificity = 0.82 Specificity = 0.65 Specificity = 0.69

Shape MRI U-Net AUC = 0.84 AUC = 0.68 AUC = 0.65

Sensitivity = 0.73 Sensitivity = 0.65 Sensitivity = 0.59

Specificity = 0.80 Specificity = 0.60 Specificity = 0.66

FreeSurfer 6.0 AUC = 0.82 AUC = 0.68 AUC = 0.64

Sensitivity = 0.73 Sensitivity = 0.66 Sensitivity = 0.60

Specificity = 0.73 Specificity = 0.60 Specificity = 0.62

The diagnostic prediction power was analyzed by fitting three different logistic
regression model (one for each binary classification case) and computing its AUC,
sensitivity, and specificity. The model was fitted to give the probability of a subject
to belong to a certain diagnostic group as a function of the hippocampal volume
multiplied by the ratio between the average ICV and the specific subject’s ICV.
Sensitivity and specificity were computed at a threshold of 0.5.

analyses, the segmentation accuracy is still lower than the
one obtained using cross-validation on the dataset from the
ADNI cohort (presented in section “Single-Cohort Evaluation”).
However, this was expected due to both the above-discussed
discrepancy between training and test cohort, as well as
the inter-rater differences when generating the ground-truth
segmentations. The experience of the rater (in terms of familiarity
with the segmentation task itself, the given image quality and the
specific MRI protocol) can indeed affect the manual delineation
of the segmentation masks.

Analysis on the Larger ADNI Dataset
For the last and largest dataset, where ground-truth masks
were not available and visually checking the accuracy was not
feasible due to the large amount of data, the performance of
the networks was checked by comparing the hippocampal
volumes with those obtained using FreeSurfer. This approach
clearly has limitations, since it cannot give a detailed
measure of the accuracy of the method in this new dataset
and could not reveal relevant differences between the three
proposed methods. However, the high correlation coefficients
(presented in Figure 5) and similarity metrics (Supplementary
Table S4) between the proposed methods and FreeSurfer

suggest both a valid and consistent performance for all the
present methods.

From Figure 5, it is possible to observe that FreeSurfer
tends to provide, in general, smaller segmentations compared
to the DL-based methods. This is in agreement with what was
discussed in Section “Cross-Cohort Analysis” when analyzing
the performance on the AddNeuroMed dataset. Indeed, in this
case, FreeSurfer was shown to have higher average precision and
lower average recall.

Furthermore, the number of identified outliers was low
in comparison with the size of the dataset, which further
supports the consistency of the results across subjects.
On the other hand, the visual inspection of some subjects
identified as outliers actually revealed a segmentation
result from MRI U-Net that did not appear to be less
accurate than the one obtained from FreeSurfer, as shown
in Figure 6. This fact further exposes the limitations of not
having a ground-truth mask to validate the performance.
On the other hand, it also suggests that the results of the
proposed DL-based approaches are promising in comparison
with other established methods, especially when dealing
with potential clinical cases (since no outliers belonged
to the HC group).

When comparing FreeSurfer with the two proposed DL-
based methods in terms of Dice score and Hausdorff distance,
a rather high consistency could also be observed, especially for
Shape MRI U-Net that showed, in average, a higher Dice score.
The resulting metrics are also rather consistent with the results
obtained when analyzing the performance of FreeSurfer both
in the single-cohort and the cross-cohort analyses. This was
expected because, as opposed to FreeSurfer, the present U-Net-
based methods were all trained on the HarP protocol used for the
manual segmentations too.

The availability of pairs of scans acquired from the same
subjects at the same time point also allowed us to perform
a test–retest analysis. This resulted in a very high CCC (i.e.,
between 0.977 and 0.989) in the hippocampal volumes between
two subsequent scans with both the tested methods, i.e., MRI
U-Net and Shape MRI U-Net. While the results obtained in
the above-described single- and cross-cohort analyses show the
accuracy of the method, these high coefficients in the test–retest
investigation demonstrate the reproducibility of the proposed
techniques. Moreover, FreeSurfer also resulted in slightly lower
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CCCs (between 0.963 and 0.969), showing how the present
methods are to some extent more reproducible.

Comparison Between Diagnostic Groups
The performance of the three proposed methods was proven to
be satisfactory in all three analyzed diagnostic groups: HC, MCI,
and AD patients. By computing the Dice score separately for
each group, we found that the segmentation accuracy is quite
consistent across the groups.

When the network was initially tested through cross-
validation on the dataset of 54 subjects from the ADNI cohort,
the AD patients’ group was the only one showing a lower
performance with respect to the other two. However, this
difference was rather small, approximately 1%. The difference
between subject groups slightly increased when testing the
network on the dataset from the AddNeuroMed cohort, which
was different from the cohort of the training data. Indeed,
in this case, a little loss in performance was seen already
in the MCI subjects, for which the Dice score showed an
average decrease of between 1 and 3% compared to HC. In
AD patients, the average decrease was between 2 and 4%
relative to HC. Observing a slightly better accuracy in the
images from HCs was expected. Indeed, MCI subjects and,
even more, AD patients are expected to present patterns
of hippocampal atrophy, which is strongly related to the
severity stage of the disease. These patterns are likely to be
quite heterogeneous if compared to the typical hippocampal
structure that can be observed on a healthy brain, making
the learning of the network more challenging for such
diagnostic cases.

Despite the little loss in performance on AD patients, the
accuracy of the proposed methods was more satisfactory than the
one obtained by applying the automatic segmentation pipeline
from FreeSurfer 6.0. FreeSurfer is also affected by a loss in
accuracy when segmenting AD patients compared to HC and
the magnitude of such loss was always higher than the ones
obtained from the presented DL pipelines. These results suggest
that the choice of a U-Net-based approach could also be favorable
when good segmentation accuracy is needed on brain images
from dementia patients. This aspect is particularly important
for a medical segmentation tool to be potentially used both in
a clinical and a research setting. Indeed, the more accurate the
segmentation is, the more reliable the estimations of hippocampal
volume and shape will be. Such geometrical features have been
shown to be strongly related to the disease progression, and
therefore it is crucial to achieve an accurate segmentation also on
demented subjects and not only on healthy ones.

The potential of the proposed methods to be used in a
clinical framework was also further shown by the comparison
between the normalized hippocampal volumes of the three
diagnostic groups present in the large ADNI dataset. All present
methodologies show significant differences in the distribution
of the hippocampal volumes between groups. In particular, the
lowest average volume was found in the AD subjects and the
highest in the HCs. This suggests that the present methods can
capture the differences in volume caused by the atrophy that is
typical of the disease progression.

The usefulness of these volumetric differences between
groups was further investigated by fitting logistic regression
models to predict the diagnosis of a subject. DL-based methods
showed a better performance than FreeSurfer 6.0 and the
highest AUC (always above 0.80) could be achieved in the
classification of AD vs. HC. Similar diagnosis classification tasks
have already been investigated in previous literature leading to
similar results. Indeed, in a study by Westman et al. (2011b),
manual hippocampal segmentations were employed to define
multivariate analysis models for diagnosis prediction, obtaining
a sensitivity and specificity of, respectively, 87 and 90% for the
AD vs. HC classification. Instead, for AD vs. MCI and MCI vs.
HC, those evaluation metrics dropped to approximately 70% in
all cases. In a later study by Voevodskaya et al. (2014), FreeSurfer
5.1 was used to extract normalized hippocampal volumes from
ADNI data and the AUC was computed for three different linear
regression models fitted for the same classification tasks. Also
in this case, the best result was obtained with AD vs. HC with
an AUC of 0.90, while poorer performance was achieved with
the other two models. Therefore, our results reflect what has
already been observed in literature, i.e., the potential of using
accurate hippocampal segmentation methods to improve the
diagnosis of AD and its discrimination from healthy cases. Even
though there are differences between different studies in their
values of AUC, sensitivity, and specificity, it has to be noted
that such discrepancies can be due to different factors. First,
the number of analyzed subjects and the model definition can
highly influence the results, e.g., the model could be affected by
overfitting. Moreover, the type and accuracy of the segmentation
method being used can also affect the performance. In addition,
the patterns of brain atrophy in AD are heterogeneous and
it has been estimated that approximately 23% of AD patients
are minimally affected by hippocampal atrophy (Poulakis et al.,
2018). Therefore, the presence of this type of patients in the
dataset can also affect the prediction power of a model based
only on hippocampal volume. However, in general, our study is
particularly consistent with the others in terms of the difference
in performance between the AD vs. HC classification compared
to the other two classification tasks. This discrepancy between
classifiers, though, will always be expected given the typical
patterns of disease progression, since the differences in atrophy
between AD and MCI subjects, as well as between MCI and HC,
are inevitably smaller compared to the differences between AD
patients and healthy subjects.

Computational Time
The present pipelines were proven to be successful not only
in terms of segmentation accuracy, but also in terms of
computational speed, which varied between approximately 30
and 150 s depending on the architecture being used. Time
efficiency is another important aspect to be taken into account
in order to use a segmentation tool in a clinical framework
as an aid for performing a diagnosis. Therefore, a DL-based
solution is promising in the context of potential clinical use.
However, it has to be noted that a computationally slower
software as FreeSurfer provides, together with the hippocampus,
the segmentation masks for many other gray and white matter
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structures, as opposed to the present study that is focused only
on hippocampal segmentation. This implies that the choice of the
most efficient segmentation method is strongly dependent on the
application of interest and on the level of accuracy that is required
from the segmentation result.

Limitations and Future Work
The present work investigates the use of a DL architecture
for an image segmentation task that is of particular interest
for AD research. Indeed, achieving an accurate hippocampal
segmentation is a crucial task for aiding research in the early
diagnosis of the disorder. Moreover, precise standards on how
to perform a good manual segmentation of the hippocampus
are available, making it easier to obtain ground-truth masks to
train the network with. However, the number of training data
used for the present work was still quite limited. This issue was
approached by using data augmentation, but in the future we
plan to expand the training dataset by adding more manual
segmentations performed by experts. Moreover, it would be
useful to obtain manual segmentations of other brain regions,
whose geometrical information could be integrated with those
from the hippocampus. Therefore, we also aim at extending the
study by testing the proposed pipelines on other brain structures
that are both of interest for Alzheimer’s research and known
to be particularly challenging for segmentation, such as the
entorhinal cortex. In particular, we want to investigate whether
the inclusion of shape information can be even more useful
in such a context.

In addition, we would like to change our architecture by using
3D U-Nets instead of the three independent 2D U-Nets. In the
present work, an implementation using 2D U-Nets was employed
mainly because of the limited 3D training data samples and its
advantage over a 3D implementation in terms of memory usage.
However, in the future, we would like to test whether the direct
use of 3D information could further improve the segmentation
accuracy in any of the proposed pipelines.

Moreover, one of the limitations of this study is that the
inclusion of shape information encoded in statistical shape
models is not entirely new, as already presented in a previous
study by Wang and Smedby (2017). In the future, we aim
at investigating a wider range of shape descriptors that could
possibly further improve the performance of our shape-aware
segmentation pipeline. However, besides the different field
of application (hippocampal segmentation instead of heart
segmentation), the main contribution of this study compared to
the one by Wang and Smedby (2017) is the extensive analysis
of the performance of Shape MRI U-Net on larger datasets
of subjects from different diagnostic groups and cohorts, as
well as the comparison with two other types of context-aware
architectures. The present work provides a new insight on how
the inclusion of a priori shape information can be employed
in cross-cohort analyses or, more in general, when a testing
dataset was not used at the time of training. In the context
of hippocampal segmentation, the use of shape information
was shown to be indeed more successful than other types of
a priori information that could be extracted from the given
anatomical structures. The integration and comparison with

other a priori information, as well as the analyses of new
cohorts, could be investigated in the future to further confirm the
present findings.

Finally, in this study, the MRI scans underwent only a
couple of preprocessing stages, i.e., resampling and intensity
normalization. A further harmonization of the inputs was later
obtained by cropping the images on Cropped MRI U-Net, as
well as including the normalized shape models on Shape MRI
U-Net. This choice was made to keep the pipeline as simple and
quick as possible. However, we would like to investigate whether
the addition of a few other preprocessing steps, such as skull
stripping, could help improving the performance of MRI U-Net.

CONCLUSION

The present work has proposed an accurate and fast method for
automatic segmentation of the hippocampus using U-Net-based
DNNs together with statistical shape modeling.

A simpler and quicker U-Net architecture, which simply uses
the original MRI scan as input image, achieved already excellent
results in a first single-cohort analysis. However, the proposed
implementation using shape context was shown to be more
successful with data from a new unseen cohort by significantly
improving the segmentation accuracy. These results suggest that
the inclusion of shape information may make the method more
robust in cases where the segmentation task is more challenging.

Our promising results across different diagnostic groups
suggest that the proposed method could not only be used as
a possible substitute for other existing segmentation tools, but
may also have a potential as an aid for studying and diagnosing
neurodegenerative disorders.
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